专业电缆故障检测定位维修,电缆故障检测装置
作者:hacker | 分类:黑客大神 | 浏览:144 | 日期:2022年07月25日目录:
电缆故障定位的 *** 有哪些?
当在电缆中专业电缆故障检测定位维修的某个局部点处专业电缆故障检测定位维修,绝缘已经恶化到发生击穿的程度专业电缆故障检测定位维修,允许电流浪涌到地,该电缆被称为故障电缆,并且更大泄漏的位置可以被认为是灾难性的绝缘故障。在获得所有间隙并且电缆已经隔离以准备电缆故障定位后,强烈建议遵循固定的攻击计划来定位故障。在诊断任何复杂问题时,按照设定的逐步程序将有助于达到解决方案,或者在这种情况下,有效地精确定位故障。
请点击输入图片描述
一般初始分析和测试完成,有两种类型的电缆故障定位仪器可用:
时域反射计(TDR)
脉冲反射 *** ,脉冲回波 *** 或时域反射计是应用于所谓的电缆雷达或TDR的术语。该技术于20世纪40年代后期开发,可以连接到电缆的一端,实际上可以看到电缆并测量电缆变化的距离。最初的首字母缩略词RADAR(RAdio Detection And Ranging)被应用于检测远程飞机的 *** ,并通过分析无线电波的反射来确定它们的距离和速度。机场雷达系统和警用雷达枪使用这种技术,其中一部分发射的无线电波从飞机或地面车辆反射回接收天线。
捶击器(浪涌发生器)
这些设备基本上是高压脉冲发生器,包括直流电源,高压电容器和某种类型的高压开关。电源用于将电容器充电至高电压,然后触点闭合将电容器放电到被测电缆中。如果电压足够高以击穿故障,则存储在电容器中的能量通过故障时的闪络迅速放电,从而在地面产生可检测的声音或“重击”。捶击器的重要规格是它可以产生的更大电压以及它为故障提供多少能量。
在聚乙烯电缆开始安装在地下几年之后,证据开始浮出水面,由于绝缘层中的“树状”,这种塑料电缆长时间高压捶击弊大于利。对于PILC电缆而言,情况并非如此,其中通常需要更高的电压和更多的能量来定位故障而不会损坏电缆。关于EPR的树木状况,意见不一。由于这种树状况,许多公用事业公司发布了工作规则,降低了用于故障定位的更大允许电压。
以焦耳(瓦特 - 秒)为单位测量的任何浪涌发生器的能量输出计算如下:E = V2 C2其中E =焦耳能量,C =电容单位为μf,V =电压单位为kV以增加“爆炸”故障只有两个选择是增加操作员可以完成的电压或增加制造商必须完成的电容。图34显示了典型的4微法脉冲发生器的输出能量曲线,该发生器在25kV的更大电压下产生1250焦耳。如果故障定位人员被告知捶击器的输出电压必须限制在12.5 kV(25 kV的一半),则其捶击器的输出能量将减少四倍至312焦耳。
在实际的世界中,300到400焦耳是在地面听到砰砰声的门槛,没有声学放大和很少的背景噪音。如果无法听到故障的砰砰声,唯一的选择是增加电压以便找到故障,进行修理并重新打开灯。
回复者:华天电力
怎么快速定位电缆故障?
随着电缆敷设方式的不同,电缆故障的定位越来越困难,其中,桥梁、隧道和沟槽的开放式应用模式的定位搜索相对简单,而直接埋设模式的定位搜索是最困难的。在故障性质简单的情况下,利用专用的电缆故障定位设备电缆故障检测仪,可以在几十分钟内定位。当故障是特殊的,往往需要很长的时间来定位故障。如何快速定位电缆故障?
在利用回波法定位电缆故障时,有时通过故障相位和连接方式的传递,将复杂故障转化为简单故障。供电部门快速确定故障位置和购电时间对现场线路检修具有重要意义。
低压电力电缆通常是一种多芯电缆,当敷设后连续使用中发生故障时,通常会发生双芯和多芯相间或相对短路故障,有时,当某一核采集的故障波形不理想时,可以将线路转换为其它故障核进行故障波形检测,这往往会产生意想不到的效果,采集到的波形和检测到的波形更加典型和规则,可以快速确定电缆故障点的具 *** 置。
在电缆用户的长期现场测量中,发现小截面铜芯直埋电力电缆(35 mm~2及以下)和铝芯电缆失效后,会同时出现短路和断丝现象,在现场检测中,短路故障往往根据每个故障核的性质转化为断线故障测量。
对于采用挤压铠装的中压直埋电力电缆,故障多为外部机械损伤所致..同时,当绝缘芯失效时,衬里层可能已经损坏。在电缆绝缘故障特殊的情况下,利用专业的电缆故障定位仪进行波形采集是十分困难的。可以认为,通过声测量,高压脉冲可以直接施加在钢带与电缆铜屏蔽层之间,而且高压脉冲往往是快速固定的。
在现场测量过程中,我们还发现,当用声学 *** 定位低压电缆故障时,将高压线和地线连接在不良相与金属屏蔽或铠装之间,两根导线的绝缘电阻呈低电阻金属连接状态,且声音很小,不可能用探头探测到固定点,效果也不理想。通过现场多次实际监听,发现放电球间隙之间的距离适当增大,发生故障的两个阶段之间的高压、接地线路发生了变化,放电声变大,故障点迅速确定。
回复者:华天电力
电缆故障查找 *** 及精确定位
对于直接短路或断线电缆故障用万用表可直接测量判断专业电缆故障检测定位维修;对于非直接短路电缆故障和接地电缆故障专业电缆故障检测定位维修,用兆欧表遥测芯线间绝缘电阻或芯线对地绝缘电阻,根据其阻值可判断电缆故障类型。下面介绍电缆故障查找专业电缆故障检测定位维修的 *** 专业电缆故障检测定位维修:
零电位法
零电位法也就是电位比较法,它适应于长度较短的电缆芯线对地故障,应用此 *** 测量简便精确,不需要精密仪器和复杂计算。测量原理如下:将电缆故障芯线与等长的比较导线并联,在b、c两端加电压VE时,相当于在两个并联的均匀电阻丝两端接专业电缆故障检测定位维修了电源,此时,一条电阻丝上的任何一点和另一条电阻丝上的对应点之间的电位差必然为零,反之,电位差为零的两点必然是对应点。因为微伏表的负极接地,与电缆故障点等电位,所以,当微伏表的正极在比较导线上移动至指示值为零时的点与电缆故障点等电位,即电缆故障点的对应点。S为单相闸刀开关,E为6E蓄电池或4节1号干电池,G为直流微伏表,测量步骤如下:
1)先在b和c相芯线上接上电池E,再在地面上敷设一根与故障电缆长度相等的比较导线S,该导线要用裸铜线或裸铝线,其截面应相等,不能有中间接头。
2)将微伏表的负极接地,正极接一根较长的软导线,导线另一端要求在敷设的比较导线上滑动时能充分接触。
3)合上闸刀开关S,将软导线的端头在比较导线上滑动,当微伏表指示为零时的位置即为电缆故障点的位置。
高压电桥法
高压电桥法就是用双臂电桥测出电缆芯线的直流电阻值,再准确测量电缆实际长度,按照电缆长度与电阻的正比例关系,计算出电缆故障点。该 *** 对于电缆芯线间直接短路或短路点接触电阻小于1Ω的故障,判断误差一般不大于3m,对于故障点接触电阻大于1Ω的故障,可采用加高电压烧穿的 *** 使电阻降至1Ω以下,再按此 *** 测量。测量电路时,首先测出芯线a与b之间的电阻R1,R1=2RX+R其中RX为a相或b相至电缆故障点的一相电阻值,只为短接点的接触电阻。再就电桥移到电缆的另一端,测出a1与b1芯线间的直流电阻值R2,则R2=2R(L-X) R,R(L-X)为a1相或b1相芯线至电缆故障点的一相电阻值。测完R1与R2后,再按图3所示电路将b1与c1短路,测出b、c两相芯线间的直流电阻值,则该组织的1/2为每相芯线的电阻值,用RL表示,RL=RX R(L-X),由此可得出故障点的接触电阻值:R=R1 R2-2RL表,因此,故障点两侧芯线的电阻值可用下式表示:RX=(R1-R)/2,R(L-X)=(R2-R)/2。RX、R(L-X)、RL三个数值确定后,按比例公式即可求出故障点距电缆端头的距离X或(L-X):X=(RX/RL)L,(L-X)=(R(L-2)在电缆的末端在测量每相芯线的电容电流Ia1、Ib2、Ic3的数值,以核对完好芯线与断线芯线的电容之比,初步可判断出断线距离近似点。
3)根据电容量计算公式C=I/(2ΠfU)可知,正电压U、频率f不变时,C与I成正比。因为工频电压的f(频率)不变,测量时只要保证施加电压不变,电容电流之比即为电容量之比。设电缆全长为L,芯线断线点距离为X,则Ia/Ic=L/X,X=(IC/Ia)L。测量过程中,只要保证电压不变,电流表读书准确,电缆总长度测量精确,其测定误差比较小。
测声法
所谓测声法就是根据故障电缆放电的声音进行查找,该 *** 对于高压电缆芯线对绝缘层闪络放电较为有效。此 *** 所用设备为直流耐压试验机。其中TB为高压试验变压器,C为高压电容器,VE为高压整流硅堆,R为限流电阻,Q为放电球间隙,L为电缆芯线。当电容器C充电到一定电压值时,球间隙对电缆故障芯线放电,在电缆故障处电缆芯线对绝缘层放电产生“滋、滋”的火花放电声,对于明敷设电缆凭听觉可直接查找,若为地埋电缆,则首先要确定并标明电缆走向。查找时,将拾音器贴近地面,沿电缆走向慢慢移动,当听到“滋、滋”放电声更大时,该处即为电缆故障点。使用该 *** 一定要注意安全,在试验设备端和电缆末端应设专人监视。
电缆故障定位
电缆故障定位的一些技巧
在利用回波法进行电缆故障定位时, 有时通过转移故障相,接线方式,往往会将复杂的故障转变为简单的故障,快速确定故障位置,为现场线路的抢修赢得时间,这对于供电使用部门意义重大。
低压电力电缆一般为多芯电缆,敷设后连续使用中出现故障后,一般都呈现两芯及多芯相间或相对地短路故障。有时在检测到某一芯采集到的故障波形不理想时,可考虑将接线转换到其他故障线芯上进行故障波形检测,往往会出现意想不到的效果,采集和检测到的波形,会变得比较典型和规则,于是就能很快确定电缆故障点的具 *** 置。
长期的电缆客户现场测量过程中发现,小截面铜芯直埋电力电缆(35mm2及以下)及铝芯电缆发生故障后,可能同时伴随短路及断线故障,现场检测时,根据各故障芯故障性质的不同将短路故障转换为断线故障测量,往往会事事半功倍。
对于内衬层采用挤包铠装的中压直埋电力电缆,故障原因大多为外部机械损伤所致,在绝缘线芯发生故障的同时,内衬层可能已经破损。在遇到电缆绝缘故障比较特殊,利用专业电缆故障仪采集波形困难时。可考虑利用声测法,将高压脉冲直接施加在电缆的钢带和铜屏蔽层之间,往往会很快定点。
在现场测量过程,在利用声测法进行低压电缆故障定点时,将高压线和地线接在坏相与金属屏蔽或铠装之间时,由于二者绝缘电阻呈现低阻金属性连接状态,声音很小,无法利用探头进行侦听定点,效果不理想。通过多次现场实际听侧,发现将放电球隙之间的距离适当加大,同时将高压和接地线改接在发生故障的两相之间,往往放电声会变大,很快确定故障点。
电缆故障点快速精确定位的 ***
电缆故障点精确定位的 *** ,其中故障电缆的总长度为已知数据,其特征在于,包括如下步骤:去除故障电缆上的负载,将两端线芯分开,?并悬空,以所述故障电缆其中一端的位置作为检测点;用数字式绝缘电阻测试仪测量所述分开的各线芯间,以及各线芯与屏蔽钢带间绝缘电阻,从而确定故障线芯,即所在故障的线芯;然后再测量故障线芯间以及各故障线芯与屏蔽钢带间的直流电阻;测得的直流电阻均小于或等于1?kΩ的,采用电缆故障定位电桥和波反射电缆故障定位仪分别测量任一故障线芯来确定故障点与检测点之间的电缆长度值,从而确定故障点位置;两装置测出的故障点位置相差大于容差距离的,此时以波反射电缆故障定位仪的测试结果为准,相差小于或等于容差距离的,将两装置测出的故障点位置之间的范围确定为故障点范围;测得的直流电阻均大于1kΩ的,使用波反射电缆故障定位仪测量任一故障线芯来确定故障点与检测点之间的电缆长度值,从而确定故障点位置,并以此故障点位置为圆心,容差距离为半径,确定故障点范围;测得的的直流电阻大小不一的,使用波反射电缆故障定位仪测量任一故障电芯来确定故障点与检测点之间的电缆长度值,从而确定故障点位置,并以此故障点位置为圆心,容差距离为半径,确定故障点范围;上述容差距离均为5m;c)用电缆故障定位电源在检测点位置对故障线芯间或故障线芯与钢带间施加脉冲电压;在步骤b)中确定的故障点范围内根据声音判断寻找故障点准确位置或者使用电缆故障定点仪,在步骤b)中确定的故障点范围内,用声磁同步法,查找电缆故障点准确位置。
电缆故障点的查找 *** :
1.低压脉冲法(简称脉冲法)
当线路输入一个脉冲电波时,该脉冲便以速度V沿线路传输,当行Lx距离遇到故障点后被反射折回输入端,其往返时间为T,V为电波在线路中的传播速度,与线路一次参数有关,对每种线路它是一个固定值,可通过计算和DFDL-S 电缆故障测试仪实测得到。将脉冲源的发射脉冲和线路故障点的反射波以一显示器实时显示,并由仪器提供的时钟信号可测得时间T。
对电缆的低阻性接地和短路故障及断线故障,及冲法可很方便地测出故障距离。但对高阻性故障,因在低电压的脉冲作用下仍呈现很高的阻抗,使反射波不明显甚至无反射。此种情况下需加一定的直流高压或冲击高压使其放电,利用闪络电弧形成瞬间短路产生电波反射。
2.直流高压闪络法(简称直闪法)
当故障电阻极高,尚未形成稳定电阻通道之前,可利用逐步升高的直流电压施于被测电缆。至一定电压值后故障点首选被击穿,形成闪络,利用闪络电弧对所加入电压形成短路反射,反射回波在输入端被高阻源形成开路反射。这样电压在输入端和故障点之间将多次反射,直至能量消耗殆尽为止。
3.冲击高压闪络法(简称冲闪法)
当故障电阻降低,形成稳定电阻通道后,因设备容量所限,直流高压加不上去,此时需改用冲击电压测试。直流高压经球间隙对电缆充电直至击穿,仍用其形成的闪络电弧产生短路反射。在电缆输入端需加测量电感L以读取回波。其原理线路见图4所示,电波在故障点被短路反射,在输入端被L反射,在其间将形成多次反射。因电感L的自感现象,开始由于L的阻流作用呈现开路反射,随着电流的增加经一定时间后呈现短路反射。而整个线路又由电容C和电感L又组成一个L—C放电的大过程。因此,在线路输入端所呈现的波过程是一个近于衰减的余弦曲线上迭加着快速的脉冲多次反射波。从反射波的间隔可求出故障的距离。