电机定位,电机定位销拆除
作者:hacker | 分类:网络攻防 | 浏览:99 | 日期:2022年07月17日目录:
- 1、电机是如何在工作台上定位的?
- 2、伺服电机绝对定位和相对定位是什么意思?
- 3、如何实现步进电机的定位控制?
- 4、伺服电机是如何实现定位的?
- 5、步进电机定位失准故障检测与维护软硬件故障?
- 6、普通电机怎样实现精确定位
电机是如何在工作台上定位的?
这是因为电机定位他们一般采用电机定位的都不是普通的电机电机定位,而是采用伺服电机电机定位,或者是步进电机,这两种电机都有定位功能,伺服电机有一种控制模式,叫位置控制模式的。
伺服电机绝对定位和相对定位是什么意思?
1、绝对定位就是相对零点的位置;
2、相对定位就是相对前一个位置。
3、要用绝对定位,就要先建立位置原点,也就是回参考点。
4、 回过参考点后,用绝对定位时,你给定的位置是以参考点为基准计算的。
5、相对定位是以当前位置为基准计算的,也就是增量方式,不需回参考点就能执行。
比如:有1~5 五个数据。
从1~3,这时为3.然后从3到5,绝对位=5,此时是以1为基准,所以=5.这叫绝对位。
从3~5,这个距离只有2.这时只能=2.这个2是相对于3开始的,是相对于3为基准的,所以这叫相对位。
如何实现步进电机的定位控制?
步进电机都是通过脉冲信号控制的,一般都是一个用来产生一定频率脉冲的单片机(脉冲频率用来控制速度),经过信号隔离放大(达到驱动电机的电压)来驱动控制步进电机。
伺服电机是如何实现定位的?
伺服主要靠脉冲来定位,也就是说当伺服电机接收到1个脉冲,就会旋转1个脉冲对应的角度,从而实现位移,因为伺服电机本身具备发出脉冲的功能,所以伺服电机每旋转一个角度,都会发出对应数量的脉冲,这样,和伺服电机接受的脉冲形成了呼应,或者叫闭环,如此一来,系统就会知道发了多少脉冲给伺服电机,同时又收了多少脉冲回来,这样,就能够很精确的控制电机的转动,从而实现精确的定位,可以达到0.001mm。 直流伺服电机分为有刷和无刷电机。有刷电机成本低,结构简单,启动转矩大,调速范围宽,控制容易,需要维护,但维护不方便(换碳刷),产生电磁干扰,对环境有要求。因此它可以用于对成本敏感的普通工业和民用场合。无刷电机体积小,重量轻,出力大,响应快,速度高,惯量小,转动平滑,力矩稳定。控制复杂,容易实现智能化,其电子换相方式灵活,可以方波换相或正弦波换相。电机免维护,效率很高,运行温度低,电磁辐射很小,长寿命,可用于各种环境。 伺服电机内部的转子是永磁铁,伺服驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)。交流伺服电机和无刷直流伺服电机在功能上的区别:交流伺服要好一些,因为是正弦波控制,转矩脉动小。直流伺服是梯形波。
步进电机定位失准故障检测与维护软硬件故障?
步进电机是一种感应电机,它的工作原理是利用电子电路,将直流电变成分时供电的,多相时序控制电流,用这种电流为步进电机供电,步进电机才能正常工作,驱动器就是为步进电机分时供电的。虽然步进电机已被广泛地应用,但步进电机并不能象普通的直流电机,交流电机在常规下使用。它必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。因此也经常会出现一些定位不准的故障。
步进电机定位不准一般由以下几方面原因引起:
1、 改变方向时丢脉冲,表现为往任何一个方向都准,但一改变方向就累计偏差,并且次
数越多偏得越多;
2、 初速度太高,加速度太大,引起有时丢步;
3、 在用同步带的场合软件补偿太多或太少;
4、 马达力量不够;
5、 控制器受干扰引起误动作;
6、 驱动器受干扰引起;
7、 软件缺陷;
针对以上问题分析如下:
1、一般的步进驱动器对方向和脉冲信号都有一定的要求,如:方向信号在之一个脉冲上升沿或下降沿(不同的驱动器要求不一样)到来前数微秒被确定,否则会有一个脉冲所运转的角度与实际需要的转向相反,最后故障现象表现为越走越偏,细分越小越明显,解决办法主要用软件改变发脉冲的逻辑或加延时。
2、由于步进电机特点决定初速度不能太高,尤其带的负载惯量较大情况下,建议初速度在1r/s以下,这样冲击较小,同样加速度太大对系统冲击也大,容易过冲,导致定位不准。
3、根据实际情况调整补偿参数值,(因为同步带弹性形变较大,所以改变方向时需加一定的补偿)。
4、适当地增大马达电流,提高驱动器电压(注意选配驱动器)选扭矩大一些的马达。
5、系统的干扰引起控制器或驱动器的误动作,我们只能想办法找出干扰源,降低其干扰能力(如屏蔽,加大间隔距离等),切断传播途径,提高自身抗干扰能力,常见措施:
①用双纹屏蔽线代替普通导线,系统中信号线与大电流或大电压变化导线分开布线,降低电磁干扰能力。
②用电源滤波器把来自电网的干扰波滤掉,在条件许可下各大用电设备的输入端加电源滤波器,降低系统内各设备之间的干扰。
③设备之间更好用光电隔离器件进行信号传送,在条件许可下,脉冲和方向信号更好用差分方式加光电隔离进行信号传送。在感性负载(如电磁继电器、电磁阀)两端加阻容吸收或快速泄放电路,感性负载在开头瞬间能产生10~100倍的尖峰电压,如果工作频率在20KHZ以上。
6、软件做一些容错处理,把干扰带来影响消除。
步进电机位置定位精度的解决 ***
驱动电路的改善
一、额定电压(电流)驱动:从额定电压降低电压来驱动 步进电机,发现位置定位精度变差。
例如:在空载时,用编码器作为负载,在额定电压(电流)时的精度与低于额定电压(电流)比较,精度变化较大。如上图所示,齿槽转矩使特性畸变的程度依据所加电压而不同,电压越低,齿槽转矩影响越明显。作者经验认为角度精度太差是很麻烦的,会引起测量电压(电流)不准。大家会注意到,转矩与电压有一定关系,而此关系如不同,会使空载时的角度精度变得很差或成为盲点。
二、2相激磁驱动:1相激磁驱动定子齿与转子齿作位置定位。相对2相激磁,由定子的2个相绕组激磁,转子齿磁场与定子磁场平衡,作位置定位。因1相激磁驱动时,其误差精度为各定子相的本身机械精度,而2相激磁误差,由多极位置决定,误差有所缓解,精度变好。特别是纵列型的两相PM型步进电机,1相激磁与2相激磁比较,1相激磁精度会差一些。
三、多步进位置定位:两相步进电机时以2或4步进位置定位驱动;三相步进电机3或6步进位置定位驱动。《步进电机步距角度精度的测量》一文中提到的是两相HB型步进电机的例子,如每4步进位置定位,精度大幅提高。
例如,每1.8°位置定位时,1.8°并非使用全步进,而是使用0.9°的步进电机,以2步进驱动1.8°位置定位,全步进选择0.6°的步进电机,3步进驱动有0.6°×3=1.8°的驱动方式。此种方式可以大大提高精度。
电机的改善
微调定子结构的改善:已知定子的微调结构能改善位置定位精度。以两相电机为例,微调结构,可以降低齿槽转矩,距角特性变为正弦波。三相HB型1.2°的步进电机,六主极无微调,与12主极有微调的全步进驱动时的位置精度比较如下图所示:
1/8细分驱动时的位置定位精度比较如下图所示:
三相12主极微调结构步进电机全步进时,位置定位精度可以改善±2%以内。在细分时,微调结构精度提高近50%。细分步距角精度比全步距角运行的精度大。步距采用8分割时,步距角为1.2°/8=0.15°,以此作为控制计算基准,其精度值当然比全步距角时要高。
三相HB型高分辨率电机的改善:三相HB型步进电机有2相1.8°的1/3,即0.6°的髙分辨率电机,由于驱动芯片可以在市场上买到,所以可以很容易地实现高精度位置定位。
RM型细分时的改善:以HB型步进电机细分的角度,用于位置定位时,其精度会有问题。RM型10细分位置定位时,计算出的位置是线性变化的,微步进细分时的角度精度比较。
普通电机怎样实现精确定位
普通电机通过系列电路可实现精确定位,
具体如下:
在动作滑块侧边更低点加个微动开关, 用微动开关控制一个中间继电器, 用中间继器的常闭触点断电机的电源,并同时接通延时继电器3S后, 用时间继电器的常开点恢复给电机供电。更高点也可以加个微动开关 道理是一样的!这样就完成了基本定位控制电路,且成本更低.